在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上. (1)如图1,AC:AB=
在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2...
在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上. (1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1: ,EF⊥CE,求EF:EG的值.
展开
绝情hSY6
2014-11-16
·
TA获得超过341个赞
知道答主
回答量:135
采纳率:0%
帮助的人:63.7万
关注
(1)详见试题解析; (2)1: . |
试题分析:(1)根据同角的余角相等得出∠CAD=∠B,根据AC:AB=1:2及点E为AB的中点,得出AC=BE,再利用AAS证明△ACD≌△BEF,即可得出EF=CD; (2)作EH⊥AD于H,EQ⊥BC于Q,先证明四边形EQDH是矩形,得出∠QEH=90°,则∠FEQ=∠GEH,再由两角对应相等的两三角形相似证明△EFQ∽△EGH,得出EF:EG=EQ:EH,然后在△BEQ中,根据正弦函数的定义得出EQ= BE,在△AEH中,根据余弦函数的定义得出EH= AE,又BE=AE,进而求出EF:EG的值. 试题解析:(1)如图1, 在△ABC中,∵∠CAB=90°,AD⊥BC于点D, ∴∠CAD=∠B=90°﹣∠ACB. ∵AC:AB=1:2,∴AB=2AC, ∵点E为AB的中点,∴AB=2BE, ∴AC=BE. 在△ACD与△BEF中, , ∴△ACD≌△BEF, ∴CD=EF,即EF=CD; (2)解:如图2,作EH⊥AD于H,EQ⊥BC于Q, ∵EH⊥AD,EQ⊥BC,AD⊥BC, ∴四边形EQDH是矩形, ∴∠QEH=90°, ∴∠FEQ=∠GEH=90°﹣∠QEG, 又∵∠EQF=∠EHG=90°, ∴△EFQ∽△EGH, ∴EF:EG=EQ:EH. ∵AC:AB=1: ,∠CAB=90°, ∴∠B=30°. 在△BEQ中,∵∠BQE=90°, ∴sin∠B= = , ∴EQ= BE. 在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°, ∴cos∠AEH= = , ∴EH= AE. ∵点E为AB的中点,∴BE=AE, ∴EF:EG=EQ:EH= BE: AE=1: . |
收起
为你推荐: