1个回答
展开全部
【1】作AE⊥CD于E
∵AB=AC,AE⊥CD
∴BE=CE,AD²=AE²+DE²,AB²=AC²=AE²+CE²
∴AD²-AB²=AE²+DE²-AE²-CE²=DE²-CE²=(DE+CE)(DE-CE)=CD×(DE-BE)=CD×BD
【2】做AM⊥BC(D在BM上)
∵AB=AC
∴BM=CM=1/2BC
∴AM²=AD²-DM²
AM²=AB²-BM²
∴AD²-DM²=AB²-BM²
AB²-AD²=BM²-DM²=(BM+DM)(BM-DM)=(CM+DM)(BM-DM)=CD×BD
即AB²-AD²=BD·CD
∵AB=AC,AE⊥CD
∴BE=CE,AD²=AE²+DE²,AB²=AC²=AE²+CE²
∴AD²-AB²=AE²+DE²-AE²-CE²=DE²-CE²=(DE+CE)(DE-CE)=CD×(DE-BE)=CD×BD
【2】做AM⊥BC(D在BM上)
∵AB=AC
∴BM=CM=1/2BC
∴AM²=AD²-DM²
AM²=AB²-BM²
∴AD²-DM²=AB²-BM²
AB²-AD²=BM²-DM²=(BM+DM)(BM-DM)=(CM+DM)(BM-DM)=CD×BD
即AB²-AD²=BD·CD
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询