高数问题 如果z=f(x,y)在点(x,y)可微分是函数该点连续的什么条件
展开全部
充分不必要条件
可以类比一下一般的y=f(x),在某点可导一定连续,连续不一定可导,所以是充分不必要。
而对于z=f(x,y),可微就是说连续了,但是不一定要可微才连续,想象一个圆锥面,在顶点处连续,但不可导。所以不必可导才连续,即充分,不必要。
扩展资料:
当自变量X改变为X+△X时,相应地函数值由f(X)改变为f(X+△X),如果存在一个与△X无关的常数A,使f(X+△X)-f(X)和A·△X之差是△X→0关于△X的高阶无穷小量,则称A·△X是f(X)在X的微分,记为dy,并称f(X)在X可微。一元微积分中,可微可导等价。
以y=x^2为例,我们需要求出该曲线在(3,9)上的斜率,当△x与△y的值越接近于0,过这两点直线的斜率就越接近所求的斜率m,当△x与△y的值变得无限接近于0时,直线的斜率就是点的斜率。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |