高中数学竞赛交流、不求正确答案、只求多种解法。二
如图,连接FG、EG。红色线为相应△的高线,为表述方便,分别用①——⑨表示。
△AME,△AFM等高 →EM/MF=S△AME/S△AFM=(S△AEF-S△AFM)/S△AFM=S△AEF/S△AFM-1
△AEF,△AFM关于AF同底 →EM/MF=S△AEF/S△AFM-1=②/①-1------(1)
③/①=AG/AM=MG/AG-1
=⑨/⑧-1=S△EFG/S△AEF-1
=(S△ABC-S△AEF-S△BFG-S△EGC)/S△AEF-1
=(S△ABC-S△BFG-S△EGC)/S△AEF=(BC⑦-BG⑤-GC⑥)/(AF②)
1/①=(BC⑦-BG⑤-GC⑥)/(AF②③) --------(2)
⑤/⑦=FB/AB→⑤=⑦FB/AB;⑥/⑦=EC/AC→⑥=⑦EC/AC;②/④=AE/AC→②=④AE/AC。代入(2),得
1/①=(BC⑦-BG⑦FB/AB-GC⑦EC/AC)/(AF②③)
=⑦(BC-BG*FB/AB-GC*EC/AC)/(AF④AE③/AC)
1/① =⑦AC(BC-BG*FB/AB-GC*EC/AC)/(AF④AE③) ------(3)
BC⑦=AB④ → ⑦/④ =AB/BC,代入(3),得
1/① =AB*AC(BC-BG*FB/AB-GC*EC/AC)/(AF*BC*AE③) -----(4)
③/④=BG/BC → ③=④*BG/BC,代入(4),得
1/① =AB*AC(BC-BG*FB/AB-GC*EC/AC)/(AF*BC*AE④*BG/BC)
1/① =AB*AC(BC-BG*FB/AB-GC*EC/AC)/(AF*AE④*BG)-----(5)
将(5)代入(1)得
EM/MF=②AB*AC(BC-BG*FB/AB-GC*EC/AC)/(AF*AE④*BG)-1---(6)
②/④=AE/AC代入上式得,
EM/MF=AE*AB*AC(BC-BG*FB/AB-GC*EC/AC)/(AF*AE*AC*BG)-1
EM/MF=AB(BC-BG*FB/AB-GC*EC/AC)/(AF*BG)-1
=(AB*BC-BG*FB-GC*EC*AB/AC)/(AF*BG)-1
=(AB*BC-BG*FB-GC*EC*AB/AC-AF*BG)/(AF*BG)
=[AB*BC-BG*(FB+AF)-GC*EC*AB/AC]/(AF*BG)
=[AB*BC-BG*AB-GC*EC*AB/AC]/(AF*BG)
=[AB*(BC-BG)-GC*EC*AB/AC]/(AF*BG)
=[AB*GC-GC*EC*AB/AC]/(AF*BG)
=[AB*GC-GC*EC*AB/AC]/(AF*BG)
=AB*GC(1-EC/AC)/(AF*BG)
=[AB*GC(AC-EC)/AC]/(AF*BG)
EM/MF =AB*GC*AE/(AC*AF*BG)
同理可得,FN/ND=BC*HA*FB/(AB*BD*CH)
DP/PE=AC*IB*DC/(BC*CE*AI)
所以 (EM/MF) * (FN/ND) * (DP/PE)
=(AB*GC*AE*BC*HA*FB*AC*IB*DC)/(AC*AF*BG*AB*BD*CH*BC*CE*AI)
=(GC*AE*HA*FB*IB*DC)/(AF*BG*BD*CH*CE*AI)
=(AE/EC)*(CD/DB)*(BF/FA)*(AH/HC)*(CG/GB)*(BI/IA)
因为AD、BE、CF三线共点,根据赛瓦定理,所以(AE/EC)*(CD/DB)*(BF/FA)=1,代入上式,得
(EM/MF)*(FN/ND)*(DP/PE)=(AH/HC)*(CG/GB)*(BI/IA)
根据赛瓦定理的可逆性,原题得证!