多传感器信息融合的理论方法

 我来答
摇驮2553
2016-06-04 · TA获得超过191个赞
知道答主
回答量:178
采纳率:100%
帮助的人:51.2万
展开全部

(1)卡尔曼滤波(KF)
卡尔曼滤波处理信息的过程一般为预估和纠正,他对多传感信息融合技术的作用中不仅是个简单具体的算法,而且也是一种非常有用的系统处理方案。事实上,它与很多系统处理信息数据的方法类似,它利用数学上迭代递推计算的方法为融合数据提供行之有效的统计意义下的最优估计,但是对存储的空间和计算要求很小,适合于对数据处理空间和速度有限制的环境下。KF分为分散卡尔曼滤波(DKF)和扩展卡尔曼滤波(EKF)两种。DKF能使数据融合完全分散化,而EKF能有效克服数据处理的误差和不稳定性对信息融合过程产生的影响。
(2)人工神经网络法
这种方法通过模仿人脑的结构和工作原理以传感器获得的数据为网络的输入,通过网络的训练在相应的机器或者模型上完成一定的智能任务来消除非目标参量的干扰。神经网络法对于消除在多传感器在协同工作中受各方面因素相互交叉影响效果明显,而且它编程简便,输出稳定 。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
希卓
2024-10-17 广告
分布式光纤振动传感技术是一种利用光纤作为传感元件,通过检测光纤中光信号的变化来感知外界振动信息的先进技术。该技术基于光纤中的瑞利散射原理,当光纤受到外界振动时,会引起光纤内部光信号的相位变化,通过测量这些变化,可以实现对振动信号的分布式感知... 点击进入详情页
本回答由希卓提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式