级数∞∑n=1 (-1)^n-1*1/√2证明条件收敛 10
推荐于2017-10-09
展开全部
∑1/ln(1+n)
因为lim(n→∞)1/ln(1+n)/(1/n)=lim(n→∞) n/ln(1+n)=lim(n→∞) 1/(1/(n+1))
=lim(n→∞) n+1=∞
而∑1/n发散,所以∑1/ln(1+n)发散
所以不是绝对收敛
然后对于交错级数∑(-1)^n-1/ln(1+n)收敛性,由莱布里茨判别法:
lim(n→∞)1/ln(1+n)=0
且 1/ln(1+n)>1/ln(n+2)
所以交错级数∑(-1)^n-1/ln(1+n)收敛,
因为lim(n→∞)1/ln(1+n)/(1/n)=lim(n→∞) n/ln(1+n)=lim(n→∞) 1/(1/(n+1))
=lim(n→∞) n+1=∞
而∑1/n发散,所以∑1/ln(1+n)发散
所以不是绝对收敛
然后对于交错级数∑(-1)^n-1/ln(1+n)收敛性,由莱布里茨判别法:
lim(n→∞)1/ln(1+n)=0
且 1/ln(1+n)>1/ln(n+2)
所以交错级数∑(-1)^n-1/ln(1+n)收敛,
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询