什么叫做单调性,如何理解

 我来答
百度网友775ea096cc3
高粉答主

2017-12-15 · 每个回答都超有意思的
知道大有可为答主
回答量:1.9万
采纳率:73%
帮助的人:4831万
展开全部

定义

函数的单调性(monotonicity)也叫函数的增减性,可以定性描述在一个指定区间内,函数值变化与自变量变化的关系。当函数f(x) 的自变量在其定义区间内增大(或减小)时,函数值也随着增大(或减小),则称该函数为在该区间上具有单调性(单调增加或单调减少)。在集合论中,在有序集合之间的函数,如果它们保持给定的次序,是具有单调性的。

如果说明一个函数在某个区间D上具有单调性,则我们将D称作函数的一个单调区间

注意:函数单调性是针对某一个区间而言的,是一个局部性质。因此,说单调性时最好指明区间。

有些函数在整个定义域内是单调的;有些函数在定义域内的部分区间上是增函数,在部分区间上是减函数;有些函数是非单调函数,如常数函数。

函数的单调性是函数在一个单调区间上的"整体"性质,具有任意性,不能用特殊值代替。

在利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题的过程中只能在定义域内,通过讨论导数的符号来判断函数的单调区间。

如果一个函数具有相同单调性的单调区间不止一个,那么这些单调区间不能用"∪"连接,而只能用"逗号"隔开。

折叠编辑本段单调函数

一般地,设一连续函数 f(x) 的定义域为D,则增函数和减函数统称单调函数。

折叠编辑本段性质

折叠图象性质

函数图象

函数单调性的几何特征:在单调区间上,增函数的图象是上升的,减函数的图象是下降的。

折叠编辑本段判断方法

折叠图象观察

如上所述,在单调区间上,增函数的图象是上升的,减函数的图象是下降的。因此,在某一区间内,一直上升的函数图象对应的函数在该区间单调递增;

一直下降的函数图象对应的函数在该区间单调递减;

两个分段函数

注意:对于分段函数,要特别注意。例如,上图左可以说是一个增函数;上图右就不能说是在定义域上的一个增函数(在定义域上不具有单调性)。

折叠定义证明

如果需要严格证明某区间上函数的单调性,则观察图象的方法就显得不太可靠了,因此需要用定义证明。

步骤:

即"任意取值--作差变形--判断定号--得出结论"。

折叠一阶导数

如果函数y=f(x)在区间D内可导(可微),若x∈D时恒有f'(x)>0,则函数y=f(x)在区间D内单调增加;反之,若x∈D时,f'(x)<0,则称函数y=f(x)在区间D内单调减少。

折叠编辑本段复合函数

在函数y=f[g(x)]的定义域内,令μ=g(x),则y=f[g(x)]的单调性由μ=g(x)与y=f(μ)的单调性共同确定,方法如下

u=g(x)

y=f(u)

y=f[g(x)]

增函数

增函数

增函数

减函数

减函数

增函数

增函数

减函数

减函数

减函数

增函数

减函数

因此,复合函数的单调性可用"同增异减"来判定,但要考虑某些特殊函数的定义域。

注:y=f(x)+g(x)不属于复合函数,因此不在此方法的适用范围内。

桥桑文L
2017-12-15 · TA获得超过313个赞
知道小有建树答主
回答量:688
采纳率:42%
帮助的人:203万
展开全部
感遇·江南有丹桔(张九龄)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式