高数 微分方程的通解
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
展开全部
求下列微分方程的通解让棚
(1).y'=(3y+1)/(x+2)
解:分离变量得dy/(3y+1)=dx/(x+2);
取积分的∫dy/(3y+1)=∫dx/(x+2)
积分之得 (1/3)ln(3y+1)=ln(x+2)+lnc=ln[c(x+2)];
即(3y+1)^(1/3)=c(x+2);也就是通解为:y=(1/3)[C(x+2)³-1];其中C=c³.
(3).y'=e^(y/喊键x)+y/x
解:令y/x=u,则y=ux........①;y'=u+xu'..........②
将①②代郑滑巧入原式并化简得:xu'=e^u;
分离变量得[e^(-u)]du=dx/x;取积分得 -∫e^(-u)d(-u)=∫dx/x;
积分之得-e^(-u)=lnx+lnc=lncx;即e^(-u)=-lncx=ln(1/cx);即-u=lnln(1/cx)
故u=-lnln(1/cx);代入①式即得原方程的通解为:y=-xlnln(1/cx).
(1).y'=(3y+1)/(x+2)
解:分离变量得dy/(3y+1)=dx/(x+2);
取积分的∫dy/(3y+1)=∫dx/(x+2)
积分之得 (1/3)ln(3y+1)=ln(x+2)+lnc=ln[c(x+2)];
即(3y+1)^(1/3)=c(x+2);也就是通解为:y=(1/3)[C(x+2)³-1];其中C=c³.
(3).y'=e^(y/喊键x)+y/x
解:令y/x=u,则y=ux........①;y'=u+xu'..........②
将①②代郑滑巧入原式并化简得:xu'=e^u;
分离变量得[e^(-u)]du=dx/x;取积分得 -∫e^(-u)d(-u)=∫dx/x;
积分之得-e^(-u)=lnx+lnc=lncx;即e^(-u)=-lncx=ln(1/cx);即-u=lnln(1/cx)
故u=-lnln(1/cx);代入①式即得原方程的通解为:y=-xlnln(1/cx).
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
创远信科
2024-07-24 广告
2024-07-24 广告
作为上海创远仪器技术股份有限公司的团队成员,我们积累了广泛的介电常数数据。这些数据覆盖了从常见物质如空气、水、塑料到专业材料如聚苯乙烯、环乙醇等的介电常数。通过精心整理和分析,我们汇编了介电常数表合集,为客户提供了宝贵的参考信息。这些数据不...
点击进入详情页
本回答由创远信科提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询