用定义证明y=sinx/x在(1,π)的一致连续性。
2个回答
展开全部
对任意ε>0,存在δ=ε/2,对任意x',x''∈(1,π),|x'-x''|<δ,有
|sinx'/x'-sinx''/x''|
=|x''sinx'-x'sinx''|/x'x''
=|x''sinx'-x'sinx'+x'sinx'-x'sinx''|/x'x''
=|(x''-x')sinx'+x'(sinx'-sinx'')|/x'x''
<=[|x''-x'||sinx'|+2x'|cos(x'+x'')/2||sin(x'-x'')/2|]/x'x''
<[δ*1+2*x'*1*|x'-x''|/2]/x'x''
<(δ/x'+δ)/x''
<(δ/1+δ)/1
=2δ
=ε
所以y=sinx/x在(1,π)上一致连续
|sinx'/x'-sinx''/x''|
=|x''sinx'-x'sinx''|/x'x''
=|x''sinx'-x'sinx'+x'sinx'-x'sinx''|/x'x''
=|(x''-x')sinx'+x'(sinx'-sinx'')|/x'x''
<=[|x''-x'||sinx'|+2x'|cos(x'+x'')/2||sin(x'-x'')/2|]/x'x''
<[δ*1+2*x'*1*|x'-x''|/2]/x'x''
<(δ/x'+δ)/x''
<(δ/1+δ)/1
=2δ
=ε
所以y=sinx/x在(1,π)上一致连续
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询