求圆ρ=√2sinθ与双纽线ρ∧2=cos2θ所围成图形的公共部分的面积

 我来答
hbc3193034
2020-02-27 · TA获得超过10.5万个赞
知道大有可为答主
回答量:10.5万
采纳率:76%
帮助的人:1.4亿
展开全部
把ρ=√2sinθ代入ρ^2=cos2θ得
2sin^θ=1-2sin^θ,
sin^θ=1/4,
取sinθ=1/2,θ=π/6.
由对称性,所求面积=2{∫<0,π/6>dθ∫<0,√2sinθ>ρdρ+∫<π/6,π/4>dθ∫<0,√cos2θ>ρdρ}
={∫<0,π/6>(1-cos2θ)dθ+∫<π/6,π/4>cos2θdθ}
=[θ-(1/2)sin2θ]|<0,π/6>+(1/2)sin2θ|<π/6,π/4>
=π/6-√3/4+(1/2)(1-√3/2)
=π/6+1/2-√3/2.
仅供参考。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式