设x1=2,Xn+1=1/2(Xn+1/Xn)(n=1,2,…),证明数列{Xn}收敛,并求其极限.
4个回答
展开全部
先用数归证1
n=1显然成立
假设n=k成立
则1
n=k+1
x(k+1)=1/2(xk+1/xk)
因为1
1/2<1/xk<=1
1<3/2=(1+1/2)/2
所以对于n=k+1也成立
1
所以xn是有界数列
下证其单调减
xn+1-xn
=1/2(xn+1/xn)-xn
=1/2(xn+1/xn-2xn)
...展开先用数归证1
n=1显然成立
假设n=k成立
则1
n=k+1
x(k+1)=1/2(xk+1/xk)
因为1
1/2<1/xk<=1
1<3/2=(1+1/2)/2
所以对于n=k+1也成立
1
所以xn是有界数列
下证其单调减
xn+1-xn
=1/2(xn+1/xn)-xn
=1/2(xn+1/xn-2xn)
=1/2(1/xn-xn)
=(1-xn^2)/(2xn)<0,因为刚证过xn>1
所以xn是一单调有界数列
所以极限必存在(单调有界必有极限)
令n->∞
极限x=limn->∞
xn满足
x=1/2(x+1/x)
2x=x+1/x
x=1/x
x^2=1
x=1(舍去负值,因为xn>1)
所以极限为1收起
n=1显然成立
假设n=k成立
则1
n=k+1
x(k+1)=1/2(xk+1/xk)
因为1
1/2<1/xk<=1
1<3/2=(1+1/2)/2
所以对于n=k+1也成立
1
所以xn是有界数列
下证其单调减
xn+1-xn
=1/2(xn+1/xn)-xn
=1/2(xn+1/xn-2xn)
...展开先用数归证1
n=1显然成立
假设n=k成立
则1
n=k+1
x(k+1)=1/2(xk+1/xk)
因为1
1/2<1/xk<=1
1<3/2=(1+1/2)/2
所以对于n=k+1也成立
1
所以xn是有界数列
下证其单调减
xn+1-xn
=1/2(xn+1/xn)-xn
=1/2(xn+1/xn-2xn)
=1/2(1/xn-xn)
=(1-xn^2)/(2xn)<0,因为刚证过xn>1
所以xn是一单调有界数列
所以极限必存在(单调有界必有极限)
令n->∞
极限x=limn->∞
xn满足
x=1/2(x+1/x)
2x=x+1/x
x=1/x
x^2=1
x=1(舍去负值,因为xn>1)
所以极限为1收起
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
Xn显然>0
由均值不等式
X(n+1)>=1
X(n+1)-Xn=1/2(1/xn-xn)<=0
Xn递减且有下界,收敛
设limXn=a>0
由Xn+1=1/2(Xn+1/Xn)
a=1/2(a+1/a)
=>a=1
希望对你有帮助!
由均值不等式
X(n+1)>=1
X(n+1)-Xn=1/2(1/xn-xn)<=0
Xn递减且有下界,收敛
设limXn=a>0
由Xn+1=1/2(Xn+1/Xn)
a=1/2(a+1/a)
=>a=1
希望对你有帮助!
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询