已知椭圆的焦点为(-1,0)(1,0),点P(2,0)在椭圆上,则椭圆的方程为?
1个回答
展开全部
明显椭圆长轴在x轴上.
两种解法.
一:设椭圆方程为x²/a²+y²/b²=1
(a>0,b>0)
将(2.0)带入方程:
4/a²=1,得出:a=2.由焦点为(-1,0)(1,0),知c=1
所以b²=a²-c²=4-1=3
所以椭圆方程为:
x²/4+y²/3=1
二:因为焦点为(-1,0)(1,0),所以c=1,
且p点在两焦点延长线上,所以p点横坐标即为椭圆的半长轴.
所以a=2
所以b²=4-1=3
所以椭圆方程为:x²/4+y²/3=1
两种解法.
一:设椭圆方程为x²/a²+y²/b²=1
(a>0,b>0)
将(2.0)带入方程:
4/a²=1,得出:a=2.由焦点为(-1,0)(1,0),知c=1
所以b²=a²-c²=4-1=3
所以椭圆方程为:
x²/4+y²/3=1
二:因为焦点为(-1,0)(1,0),所以c=1,
且p点在两焦点延长线上,所以p点横坐标即为椭圆的半长轴.
所以a=2
所以b²=4-1=3
所以椭圆方程为:x²/4+y²/3=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询