这题微分方程求通解 y(xy+1)dx+x(1+xy+x?)dy=0求通解

 我来答
茹翊神谕者

2021-03-10 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1536万
展开全部

简单计算一下即可,答案如图所示

佛壮侯锐意
2020-07-28 · TA获得超过1033个赞
知道小有建树答主
回答量:1463
采纳率:100%
帮助的人:6.4万
展开全部
这不是全微分方程只有,先化简得dy/dx=[-y(xy+1)]/[x(1+xy+x^2y^2)],设u=xy,所以y=u/x,对y求导y'=(xu'-u)/x^2,将上式带入微分方程得xu'-u=[-u(u+1)]/(1+u+u^2),这很明显是个可分离变量的微分方程吧!u移过去x移过来两边积分就行,打字累,觉得是的就采纳吧!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式