高等数学中d是微分。
可以对任一变量微分,比如dy=y'dx,d/dx是对微分的商,可以叫对x的导数或者微商,先d才有d/dx。
一阶导数的导数称为二阶导数,二阶以上的导数可由归纳法逐阶定义。二阶和二阶以上的导数统称为高阶导数。从概念上讲,高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。
微分历史:
早在希腊时期,人类已经开始讨论「无穷」、「极限」以及「无穷分割」等概念。这些都是微积分的中心思想;虽然这些讨论从现代的观点看有很多漏洞,有时现代人甚至觉得这些讨论的论证和结论都很荒谬,但无可否认,这些讨论是人类发展微积分的第一步 。
例如公元前五世纪,希腊的德谟克利特(Democritus)提出原子论:他认为宇宙万物是由极细的原子构成。在中国,《庄子.天下篇》中所言的「一尺之捶,日取其半,万世不竭」,亦指零是无穷小量。这些都是最早期人类对无穷、极限等概念的原始的描述。
其他关于无穷、极限的论述,还包括芝诺(Zeno)几个著名的悖论:其中一个悖论说一个人永远都追不上一只乌龟,因为当那人追到乌龟的出发点时,乌龟已经向前爬行了一小段路,当他再追完这一小段,乌龟又已经再向前爬行了一小段路。
芝诺说这样一追一赶的永远重覆下去,任何人都总追不上一只最慢的乌龟--当然,从现代的观点看,芝诺说的实在荒谬不过;他混淆了「无限」和「无限可分」的概念。人追乌龟经过的那段路纵然无限可分,其长度却是有限的;所以人仍然可以以有限的时间,走完这一段路。
然而这些荒谬的论述,开启了人类对无穷、极限等概念的探讨,对后世发展微积分有深远的历史意味。
另外值得一提的是,希腊时代的阿基米德(Archimedes)已经懂得用无穷分割的方法正确地计算一些面积,这跟现代积分的观念已经很相似。由此可见,在历史上,积分观念的形成比微分还要早--这跟课程上往往先讨论微分再讨论积分刚刚相反。
高等数学中d是微分,可以对任一变量微分,比如dy=y'dx,d/dx是对微分的商,可以叫对x的导数或者微商,先d才有d/dx。
一阶导数的导数称为二阶导数,二阶以上的导数可由归纳法逐阶定义。二阶和二阶以上的导数统称为高阶导数。从概念上讲,高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。
扩展资料:
对任意n阶导数的计算,由于 n 不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。
所谓n阶导数的计算实际就是要设法求出以n为参数的导函数表达式。求n阶导数的参数表达式并没有一般的方法,最常用的方法是,先按导数计算法求出若干阶导数,再设法找出其间的规律性,并导出n的参数关系式。
d/dx∫f(x)dx=d[F(x)+C]/dx,代表对积分F(x)+C进行求导
d∫f(x)dx=d([F(x)+C],一般用于微分方程,约掉了dx
但是我们题目上面还就有一个d啊
那个是和dx配对使用的,根本无法单独使用
dy/dx可以写为:d/dx (y)表示这个算符作用在y上。
请看题目 粘贴复制的自觉gun