设A为n阶矩阵,b为n维列向量,证明Ax=b有唯一解的充分必要条件是A可逆
1个回答
展开全部
证明:
Ax=b有唯一解,
那么r(A,b)=r(A)=n,
而A为n阶矩阵,所以r(A)=n可以得到A可逆
同理,
n阶矩阵A可逆,那么r(A)=n,
而增广矩阵r(A,b)显然此时等于r(A),
所以r(A,b)=r(A)=n,
方程有唯一解
故Ax=b有唯一解的充分必要条件是A可逆
Ax=b有唯一解,
那么r(A,b)=r(A)=n,
而A为n阶矩阵,所以r(A)=n可以得到A可逆
同理,
n阶矩阵A可逆,那么r(A)=n,
而增广矩阵r(A,b)显然此时等于r(A),
所以r(A,b)=r(A)=n,
方程有唯一解
故Ax=b有唯一解的充分必要条件是A可逆
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
北京羿射旭科技有限公司
2019-11-29 广告
2019-11-29 广告
高阻尼隔震橡胶支座的价格大概在每个一两百元,便宜的有十几二十元,贵的有好几百元。高阻尼隔震橡胶支座的价格受多方面影响,如品牌、类别、规格、市场等。关键还是要学会挑选方法。变检算是否满足相应地震力作用下的使用要求。b..应根据跨度和温度变化幅...
点击进入详情页
本回答由北京羿射旭科技有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询