整除是什么意思?
若整数b除以非零整数a,商为整数,且无余数, 我们就说b能被a整除(或说a能整除b),b为被除数,a为除数,即a|b(“|”是整除符号),读作“a整除b”或“b能被a整除”。a叫做b的约数(或因数),b叫做a的倍数。整除属于除尽的一种特殊情况。
整除与除尽既有区别又有联系。除尽是指数b除以数a(a≠0)所得的商是整数或有限小数而余数是零时,我们就说b能被a除尽(或说a能除尽b)。因此整除与除尽的区别是,整除只有当被除数、除数以及商都是整数,而无余数.除尽并不局限于整数范围内,被除数、除数以及商可以是整数,也可以是有限小数,只要无余数就可以了。它们之间的联系就是整除是除尽的特殊情况。
①若b|a,c|a,且b和c互质,则bc|a。
②对任意非零整数a,±a|a=±1。
整除抽象图(5张)
③若a|b,b|a,则|a|=|b|。
④如果a能被b整除,c是任意整数,那么积ac也能被b整除。
⑤对任意整数a,b>0,存在唯一的数对q,r,使a=bq+r,其中0≤r<b,这个事实称为带余除法定理,是整除理论的基础。
⑥若c|a,c|b,则称c是a,b的公因数。若d是a,b的公因数,d≥0,且d可被a,b的任意公因数整除,则d是a,b的最大公因数。若a,b的最大公因数等于1,则称a,b互素,也称互质。累次利用带余除法可以求出a,b的最大公因数,这种方法常称为辗转相除法。又称欧几里得算法。
能被2整除的数的特征
若一个整数的末位是0、2、4、6或8,则这个数能被2整除。
能被3整除的数的特征
1,若一个整数的数字和能被3整除,则这个整数能被3整除。
2,推论:由相同的数字组成的三位数、六位数、九位数……3n位数(n为自然数),这些数字能被3整除。如111能被3整除。
能被5整除的数的特征
若一个整数的末位是0或5,则这个数能被5整除。
能被7整除的数的特征
1.若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。同能被17整除的数的特征。
2.末三位以前的数与末三位以后的差(或反过来)。同能被11,13整除的数的特征。
能被11整除的数的特征
若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。
能被13整除的数的特征
若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。
能被17整除的数的特征
若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。
能被19整除的数的特征
1、若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果和是19的倍数,则原数能被19整除。如果和太大或心算不易看出是否19的倍数,就需要继续使用能被13整除特征的方法。
2、若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。
希望我能帮助你解疑释惑。