已知B为△ACD所在平面外一点,点M,N,G分别为△ABC,△ABD,△BCD的重心 20
已知B为△ACD所在平面外一点,点M,N,G分别为△ABC,△ABD,△BCD的重心1.求证:平面MNG//平面ACD2.求S△MNG:S△ADC...
已知B为△ACD所在平面外一点,点M,N,G分别为△ABC,△ABD,△BCD的重心
1.求证:平面MNG//平面ACD
2.求S△MNG:S△ADC 展开
1.求证:平面MNG//平面ACD
2.求S△MNG:S△ADC 展开
3个回答
展开全部
解析:(1)要证明平面MNG//平面ACD,由于M、N、G分别
为△ABC、△ABD、△BCD的重心,因此可想到利用重心的性
质找出与平面平行的直线。
证明:连结BM、BN、BG并延长交AC、AD、CD分别于P、F、H。
∵M、N、G分别为△ABC、△ABD、△BCD的重心,
则有:
连结PF、FH、PH有MN‖PF,又PF 平面ACD,∴MN‖平面ACD。
同理:MG‖平面ACD,MG∩MN=M,
∴平面MNG‖平面ACD
(2)分析:因为△MNG所在的平面与△ACD所在的平面相互平行,因此,求两三角形的面积之比,实则求这两个三角形的对应边之比。
解:由(1)可知 ,
∴MG= PH,又PH= AD,∴MG= AD
同理:NG= AC,MN= CD,
∴ MNG∽ ACD,其相似比为1:3,
∴ =1:9
点评:立体几何问题,一般都是化成平面几何问题,所以要重视平面几何。比如重心定理,三角形的三边中线交点叫做三角形有重心,到顶点的距离等于它到对边中点距离的2倍。
呵呵 数学目标的吧?我刚找到的,一起看吧
为△ABC、△ABD、△BCD的重心,因此可想到利用重心的性
质找出与平面平行的直线。
证明:连结BM、BN、BG并延长交AC、AD、CD分别于P、F、H。
∵M、N、G分别为△ABC、△ABD、△BCD的重心,
则有:
连结PF、FH、PH有MN‖PF,又PF 平面ACD,∴MN‖平面ACD。
同理:MG‖平面ACD,MG∩MN=M,
∴平面MNG‖平面ACD
(2)分析:因为△MNG所在的平面与△ACD所在的平面相互平行,因此,求两三角形的面积之比,实则求这两个三角形的对应边之比。
解:由(1)可知 ,
∴MG= PH,又PH= AD,∴MG= AD
同理:NG= AC,MN= CD,
∴ MNG∽ ACD,其相似比为1:3,
∴ =1:9
点评:立体几何问题,一般都是化成平面几何问题,所以要重视平面几何。比如重心定理,三角形的三边中线交点叫做三角形有重心,到顶点的距离等于它到对边中点距离的2倍。
呵呵 数学目标的吧?我刚找到的,一起看吧
杭州彩谱科技有限公司
2020-07-03 广告
2020-07-03 广告
测色仪L、a、b、c、h的意思,L代表明暗度(黑白),a代表红绿色,b代表黄蓝色,c表示彩度(色彩饱和的程度或纯粹度),h表示色调角。测色仪,广泛应用于塑胶、印刷、油漆油墨、纺织、印染服装等行业的颜色管理领域,根据CIE色空间的Lab,Lc...
点击进入详情页
本回答由杭州彩谱科技有限公司提供
展开全部
同问
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)连结BM,BN,BG并延长分别交AC,AD,CD于P,F,H.
∵M,N,G分别为△ABC,△ABD,△BCD的重心,
则有BMMP=BNNF=BGGH=2,
且P,H,F分别为AC,CD,AD的中点.
连结PF,FH,PH,有MN∥PF.
又PF⊂平面ACD,MN⊄平面ACD,
∴MN∥平面ACD.
同理MG∥平面ACD,MG∩MN=M,
∴平面MNG∥平面ACD.
(2)解 由(1)可知MGPH=BGBH=23,
∴MG=23PH.
又PH=12AD,∴MG=13AD.
同理NG=13AC,MN=13CD.
∴△MNG∽△ACD,其相似比为1∶3.
∴S△MNG∶S△ACD=1∶9.
∵M,N,G分别为△ABC,△ABD,△BCD的重心,
则有BMMP=BNNF=BGGH=2,
且P,H,F分别为AC,CD,AD的中点.
连结PF,FH,PH,有MN∥PF.
又PF⊂平面ACD,MN⊄平面ACD,
∴MN∥平面ACD.
同理MG∥平面ACD,MG∩MN=M,
∴平面MNG∥平面ACD.
(2)解 由(1)可知MGPH=BGBH=23,
∴MG=23PH.
又PH=12AD,∴MG=13AD.
同理NG=13AC,MN=13CD.
∴△MNG∽△ACD,其相似比为1∶3.
∴S△MNG∶S△ACD=1∶9.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询