求解数学关于降幂的
3个回答
展开全部
sin⁴(π/16) + sin⁴(3π/16) + sin⁴(5π/16) + sin⁴(7π/16)
= sin⁴(π/16) + sin⁴(3π/16) + cos⁴(3π/16) + cos⁴(π/16)
= {sin²(π/16)+cos²(π/16)}² + {sin²(3π/16)+cos²(3π/16)}² - 2sin²(π/16)cos²(π/16) - 2sin²(3π/16)cos²(3π/16)
= 1 + 1 - 2{sin(π/16)cos(π/16)}² - 2{sin(3π/16)cos(3π/16)}²
= 1 + 1 - 2{1/2*sin(π/8)}² - 2{1/2*sin(3π/8)}²
= 2 - 1/2*sin²(π/8) - 1/2*sin²(3π/8)
= 2 - 1/2 * {sin²(π/8) + sin²(3π/8)}
= 2 - 1/2 * {sin²(π/8) + cos²(π/8)}
= 2 - 1/2
= 3/2
= sin⁴(π/16) + sin⁴(3π/16) + cos⁴(3π/16) + cos⁴(π/16)
= {sin²(π/16)+cos²(π/16)}² + {sin²(3π/16)+cos²(3π/16)}² - 2sin²(π/16)cos²(π/16) - 2sin²(3π/16)cos²(3π/16)
= 1 + 1 - 2{sin(π/16)cos(π/16)}² - 2{sin(3π/16)cos(3π/16)}²
= 1 + 1 - 2{1/2*sin(π/8)}² - 2{1/2*sin(3π/8)}²
= 2 - 1/2*sin²(π/8) - 1/2*sin²(3π/8)
= 2 - 1/2 * {sin²(π/8) + sin²(3π/8)}
= 2 - 1/2 * {sin²(π/8) + cos²(π/8)}
= 2 - 1/2
= 3/2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询