从0~9这10个数字中任取2个偶数和3个奇数,问: (1)可组成多少个没有重复数字的五位数?
从0~9这10个数字中任取2个偶数和3个奇数,问:(1)可组成多少个没有重复数字的五位数?(2)可组成多少个没有重复数字的五位数?若不允许选取0,那么在这些五位数中:(3...
从0~9这10个数字中任取2个偶数和3个奇数,问:
(1)可组成多少个没有重复数字的五位数?
(2)可组成多少个没有重复数字的五位数?
若不允许选取0,那么在这些五位数中:(3)2个偶数排在一起的有多少个?
(4)偶数排在一起,奇数排在一起的有多少个?
(5)任意两个偶数都不相邻的有多少个? 展开
(1)可组成多少个没有重复数字的五位数?
(2)可组成多少个没有重复数字的五位数?
若不允许选取0,那么在这些五位数中:(3)2个偶数排在一起的有多少个?
(4)偶数排在一起,奇数排在一起的有多少个?
(5)任意两个偶数都不相邻的有多少个? 展开
展开全部
可组成12000个没有重复数字的五位数。
1、0~9这10个数字中任取2个偶数的可能性为:5×4÷2=10;
2、0~9这10个数字中任取3个偶数的可能性为:5×4×3÷3÷2=10;
3、任意五个不相同的数字组成五位数的可能性为:5×4×3×2×1=120;
4、一共的可能性为:120×10×10=12000种。
扩展资料:
两个常用的排列基本计数原理及应用
1、加法原理和分类计数法:
每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
2、乘法原理和分步计数法:
任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。
2014-03-06
展开全部
当个位为零时,其他位上为C42*A42*A52当个位是五时,其他位上为C42*A42*4*5结果为2880种不知道对不对,还望参考做法。谢谢!
追问
五道题
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-03-06
展开全部
不取0时,从1到9取3个奇数2个偶数有C42C53=60种情况,然后排列成5位数有A55=120种情况。
故有60×120=7200种情况。
取0时,从1到9取3个奇数1个偶数有C41C53=40种情况,然后排列时0不可为首位,故有4A44=96种情况。
故有40×96=3840种情况。
综上为11040
故有60×120=7200种情况。
取0时,从1到9取3个奇数1个偶数有C41C53=40种情况,然后排列时0不可为首位,故有4A44=96种情况。
故有40×96=3840种情况。
综上为11040
追问
能解析第五小题吗
恳求
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询