如图,点O在∠APB的平分线上,⊙O与PA相切于点C。(1)求证:直线PB与⊙O相切;
﹙2﹚PO的延长线与⊙O交于点E,若⊙O的半径为3,PC=4,求弦CE的长。急!!!!!!!!!!!!!!快快快!!!!!!!!!!!!!!!在线等!!!!!!!!!快啊...
﹙2﹚PO的延长线与⊙O交于点E,若⊙O的半径为3,PC=4,求弦CE的长。急!!!!!!!!!!!!!!快快快!!!!!!!!!!!!!!!在线等!!!!!!!!!快啊!!!!!!!!!
展开
2个回答
展开全部
(1)证明;过点O作OD垂直PB于D
所以角ODP=90度
因为圆O与PA相切于C
所以角OCP=90度
所以角OCP=角ODP=90度
因为点O在角APB的平分线上
所以叫OPC=角OPD
因为OP=OP
所以三角形OCP和三角形ODP全等(AAS)
所以OC=OD
因为OC是圆O的半径
所以OD是圆O的半径
所以直线PB与圆O相切
(2)解:因为角OCP=90度
所以三角形OCP是直角三角形
所以OC^2+PC^2=OP^2
cos角OPC=PC/OP
因为OC=OE=3
PC=4
所以OP=5
cos角OPC=4/5
因为PE=OP+OE=5+3=8
在三角形PCE中,由余弦定理得:
CE^2=PC^2+PE^2-2PE*PC*cos角OPC
所以CE=12倍根号5/5
所以角ODP=90度
因为圆O与PA相切于C
所以角OCP=90度
所以角OCP=角ODP=90度
因为点O在角APB的平分线上
所以叫OPC=角OPD
因为OP=OP
所以三角形OCP和三角形ODP全等(AAS)
所以OC=OD
因为OC是圆O的半径
所以OD是圆O的半径
所以直线PB与圆O相切
(2)解:因为角OCP=90度
所以三角形OCP是直角三角形
所以OC^2+PC^2=OP^2
cos角OPC=PC/OP
因为OC=OE=3
PC=4
所以OP=5
cos角OPC=4/5
因为PE=OP+OE=5+3=8
在三角形PCE中,由余弦定理得:
CE^2=PC^2+PE^2-2PE*PC*cos角OPC
所以CE=12倍根号5/5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询