2个回答
展开全部
Sn=An^2/4
+
An/2
-
3/4
S(n-1)
=
[A(n-1)]^2
/4
+
[A(n-1)]/2
-
3/4
两式相减得:
An
=
An^2/4
+
An/2
-
[A(n-1)]^2
/4
-
[A(n-1)]/2
(1/4)[An
+
A(n-1)][An
-
A(n-1)]
-
(1/2)[An
+
A(n-1)]
=
0
因为是正项数列,所以An
+
A(n-1)不等于0,则
(1/4)[An
-
A(n-1)]=
1/2
An
-
A(n-1)
=
2
可见这是一个公差为2的等差数列
求出A1:
由Sn=1/4an^2+1/2an-3/4得:
A1
=
(1/4)A1^2
+
(1/2)A1
-
3/4
(A1
-
3)(A1
+
1)
=
0
因A1>0,所以
A1
=
3
An
=
A1
+
(n-1)d
=
3
+
2(n
-
1)
=
2n
+
1
数列{an}通项公式:an
=
2n
+
1
+
An/2
-
3/4
S(n-1)
=
[A(n-1)]^2
/4
+
[A(n-1)]/2
-
3/4
两式相减得:
An
=
An^2/4
+
An/2
-
[A(n-1)]^2
/4
-
[A(n-1)]/2
(1/4)[An
+
A(n-1)][An
-
A(n-1)]
-
(1/2)[An
+
A(n-1)]
=
0
因为是正项数列,所以An
+
A(n-1)不等于0,则
(1/4)[An
-
A(n-1)]=
1/2
An
-
A(n-1)
=
2
可见这是一个公差为2的等差数列
求出A1:
由Sn=1/4an^2+1/2an-3/4得:
A1
=
(1/4)A1^2
+
(1/2)A1
-
3/4
(A1
-
3)(A1
+
1)
=
0
因A1>0,所以
A1
=
3
An
=
A1
+
(n-1)d
=
3
+
2(n
-
1)
=
2n
+
1
数列{an}通项公式:an
=
2n
+
1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询