设F(x)=ax+1/x+b(a,b属于z),曲线y=F(x)在点(2,F(2) )处的切线为y=
1个回答
展开全部
解:
(1)y=ax+1/(x+b)
y'=a-1/(x+b)^2
x=2时,y'=a-1/(2+b)^2=0
且f(2)=3,即2a+1/(2+b)=3
解得a=1,b=-1(非整数解舍去)
f(x)=x+1/(x-1)
(2)坐标平移不影响三角形的面积,因此本题可以化简为
g(x)=x+1/x上一点的切线与y轴和y=x所围成的三角形的面积
切点p(a,b)的新坐标为(a-1,b-1)
下面问题是这个a和b显然不是(1)中的a和b,所以切线方程为
y-(a-1+1/(a-1))=(1-1/(a-1)^2)(x-a+1)
(1)y=ax+1/(x+b)
y'=a-1/(x+b)^2
x=2时,y'=a-1/(2+b)^2=0
且f(2)=3,即2a+1/(2+b)=3
解得a=1,b=-1(非整数解舍去)
f(x)=x+1/(x-1)
(2)坐标平移不影响三角形的面积,因此本题可以化简为
g(x)=x+1/x上一点的切线与y轴和y=x所围成的三角形的面积
切点p(a,b)的新坐标为(a-1,b-1)
下面问题是这个a和b显然不是(1)中的a和b,所以切线方程为
y-(a-1+1/(a-1))=(1-1/(a-1)^2)(x-a+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询