什么是虚数?它和实数有什么区别?
实数,是有理数和无理数的总称。实数可以分为有理数和无理数两类,或代数数和超越数两类。
在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i² = - 1。
虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。
扩展资料
像x+1=0这样最简单的二次方程,在实数范围内没有解。12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数。
因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负数平方根的存在。
到了16世纪,意大利数学家卡尔达诺在其著作《大术》(《数学大典》)中,把记为1545R15-15m这是最早的虚数记号。但他认为这仅仅是个形式表示而已。1637年法国数学家笛卡尔,在其《几何学》中第一次给出“虚数”的名称,并和“实数”相对应。
参考资料来源:百度百科-实数
参考资料来源:百度百科-虚数 (数学用语)
2017-05-07 · 知道合伙人教育行家
实数:有理数和无理数的总称.其中无理数就是无限不循环小数,有理数就包括整数和分数.
实数包括有理数(能写成分数的数:如2/3,2/1)和无理数(不能写成分数的数,无限不循环小数),有理数包括整数和最简分数.-1开方就得到虚数i; 虚数的一般式为:c=a+bi,a和b是实数.如果b=0,则c叫实数; 如果a=0,则c叫纯虚数.在复空间坐标中,实数为x轴,虚数单位i为y轴单位,
形如z=a+ib(a,b为实数)的数称为复数,a为z的实部,记做Rel(z)=a,b为z的虚部,记为Img(z)=b,当b非零时,称z为虚数.i为x^2=-1的一个根,称为虚数单位.
虚数运算和实数运算法则完全一致,都满足(乘法或加法)结合律,分配律和交换律.我们可以虚数当成多项式处理,当然用i^2=-1可以简化.
复数域是实数域的扩张.
虚数开方采取实数配平方的方法.
虚数+虚数=虚数 或 实数
虚数+实数=虚数
虚数*虚数=虚数 或 实数
虚数/虚数=虚数 或 实数
虚数*实数=虚数 或 实数
虚数/实数=虚数
虚数的开方为虚数.
虚数:在数学里,将平方是负数的数定义为纯虚数;实数:有理数和无理数的总称.其中无理数就是无限不循环小数,有理数就包括整数和分数。
虚数:
虚数可以指不实的数字或并非表明具体数量的数字。在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i² = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。
基本运算:
加减与实数相同(a+bi)。
乘方(幕) (a+bi)^n=r^n∠nθ,乘方与实数运算相同,但(a+bi)^n不便于运算,一般转化成r^n∠nθ再转换回(A+Bi)以简化运算。
乘法与实数相同,可用 “i的平方=-1,i的立方=-i,i的4次方=1” 来加快运算。乘法也可转化(一般不用),即(a+bi)(A+Bi)=rR∠(θ1+θ2)。
意义上除法与实数相同(只是乘法的逆运算),但”(A+Bi)/(a+bi)=C+Di“属于二元一次方程,虽有公式C=(aA+bB)/(a^2+b^2),D=(aB-Ab)/(a^2+b^2),仍属麻烦。除非除数是实数,一般都会进行转化,即(a+bi)/(A+Bi)=r/R∠(θ1-θ2)。
绝对值指点与原点的距离,而不是去符号,因此abs(a+bi)=r=√(a^2+b^2)。
平方根立方根是平方立方的逆运算,则有(a+bi)的n次方根=(a+bi)^(1/n)=r^(1/n)∠θ/n,转化即可。
2013-10-23
-1开方就得到虚数i;
虚数的一般式为:c=a+bi,a和b是实数.
如果b=0,则c叫实数;
如果a=0,则c叫纯虚数。
在复空间坐标中,实数为x轴,虚数单位i为y轴单位,
广告 您可能关注的内容 |