实数和虚数的区别是什么?

 我来答
电子数码aP
高能答主

2022-03-24 · 把复杂的事情简单说给你听
知道小有建树答主
回答量:849
采纳率:100%
帮助的人:13.7万
展开全部

区别如下:

一、数学性质不同:

实数是有理数和无理数的总称,数学上,实数定义为与数轴上的实数,点相对应的数,实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应,但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。

虚数就是形如a+bi的数,其中ab是实数,且b≠0i = - 1,虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字,后来发现虚数a+bi的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+bi可与平面内的点(ab)对应。

二、表示方式不同:

实数可以用来测量连续的量,理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的),在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。

在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i=-1,但是虚数是没有算术根这一说的,所以±√(-1)=±i,对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。

实数集是不可数的,也就是说,实数的个数严格多于自然数的个数(尽管两者都是无穷大),这一点,可以通过康托尔对角线方法证明,即自然数集的幂集的势,由于实数集中只有可数集个数的元素可能是代数数,绝大多数实数是超越数

实数集的子集中,不存在其势严格大于自然数集的势且严格小于实数集的势的集合,这就是连续统假设。事实上这假设独立于ZFC集合论,在ZFC集合论内既不能证明它,也不能推出其否定。

所有非负实数的平方根属于R,但这对负数不成立。这表明R上的序是由其代数结构确定的,而且,所有奇数次多项式至少有一个根属于R,这两个性质使成为实封闭域的最主要的实例,证明这一点就是对代数基本定理的证明的前半部分。

做而论道
高能答主

2023-03-13 · 把复杂的事情简单说给你听
知道大有可为答主
回答量:3万
采纳率:80%
帮助的人:1.2亿
展开全部

实数,就是:整数、小数,以及“带小数”的统称。

实数包括了:

  整数(正整数、负整数、零);

  小数(正的、负的、有限的、无限的、循环的、不循环的)。

  带小数(含有整数部分和小数部分)

这些,都是小学学过的知识吧?

实数,简单来说,就是:“数轴上所有的点”上的数字。

--------------------------

虚数,是“实数与虚单位 i 的乘积”。

  其中 i * i =-1。

  由于 i 的存在,虚数就是“i 轴上所有的点”的数字。

--------------------------

复数,包括实部和虚部两个部分。

  一般是以实轴为水平、i 轴为垂直,构成一个“复平面”。

  复数就是:“复平面上所有点”上的数字。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式