已知直线Y=-根号3分之3X+1与X轴,Y轴分别交于点A,B,以线段AB为直角边在第一象限内作等腰

△ABC,∠BAC=90°,且点P(1,a)为坐标系中的一个动点.1、求S△ABC面积2、证明△BOP面积是个与a无关的常数3、若△ABC和△ABP面积等,求a的值... △ABC,∠BAC=90°,且点P(1,a)为坐标系中的一个动点.
1、求S△ABC面积
2、证明△BOP面积是个与a无关的常数
3、若△ABC和△ABP面积等,求a的值
展开
weigan4110
2014-05-06 · TA获得超过27.9万个赞
知道大有可为答主
回答量:2.6万
采纳率:14%
帮助的人:9376万
展开全部
解:如图,根据题意,P点有两种可能P1和P21、 先求P1点的a
根据y=-[(√3)/3]x+1得:A点的坐标为(√3,0)、B点的坐标为(0,1)
∴OB=1、OA=√3, AB=√(OB^2+OA^2)=2=AC
∵∠BAC=90°∴三角形ABC的面积=(1/2)AB×AC=2
三角形ABP1的面积=梯形AODP1的面积+三角形AOB的面积-三角形BDP1的面积=三角形ABC的面积
∵DP1=1、OA=√3、OD=a、OB=1、DB=OD+OB=a+1
∴S△ABP1=(1/2)(DP1+OA)×OD+(1/2)OA×OB-(1/2)DP1×DB=(1/2)AB×AC
∴(1/2)(1+√3)×a+(1/2) √3×1-(1/2) ×1×(a+1)= (1/2)×2×2
解得:a=(1/3)[(5√3)-3]
∵P1在第四象限∴a=-(1/3)[(5√3)-3]
2、 求P2点的a
三角形ABP2的面积=梯形AOEP2的面积-三角形AOB的面积-三角形BEP2的面积=三角形ABC的面积
∵EP2=1、OA=√3、OB=1、OE=a、BE=OE-OB=a-1
∴S△ABP2=(1/2)(EP2+OA)×OE-(1/2)OA×OB-(1/2)EP2×BE=(1/2)AB×AC
即:(1/2)(1+√3)a-(1/2)×√3×1-(1/2)×1×(a-1) =(1/2)×2×2
解得:a=(√3)+1
∴实数a的值为-(1/3)[(5√3)-3]或(√3)+1
看完了好评我哦~~
更多追问追答
追问
等等哥。。。
1,2小问答案那
追答
三角形ABC的面积=(1/2)AB×AC=2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式