{an}是正项等比数列,公比q=2,且a1a2a3……a30=2^30,那么a3a6a9……a30=???
1个回答
展开全部
解:由a1a2a3…a20=2^30,q=2可知:
a1a2a3¨a30=2^30
a1a2a3¨a30=a1^30q^(1+2+…+29)
=a1^30q^(29×15)
=a1^30q^435
=a1^30×2^435
=a1^30×2^435
=2^30
所以
a1^30=1/2^405
所以a1^10=1/2^135………………(二边开立方)
a3a6a9…a30
=a1^10q^(2+5+…+29)
=a1^10q^(31×5)
=a1^10q^155
=a1^10×2^155
=1/2^135×2^155
=2^20
a1a2a3¨a30=2^30
a1a2a3¨a30=a1^30q^(1+2+…+29)
=a1^30q^(29×15)
=a1^30q^435
=a1^30×2^435
=a1^30×2^435
=2^30
所以
a1^30=1/2^405
所以a1^10=1/2^135………………(二边开立方)
a3a6a9…a30
=a1^10q^(2+5+…+29)
=a1^10q^(31×5)
=a1^10q^155
=a1^10×2^155
=1/2^135×2^155
=2^20
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询