两道数学题,急!!!!!!!!!
1/1*4+1/2*5+1/3*6+……+1/n*(n+3)证明1/1*3+1/2*4+1/3*5+……+1/n(n+2)=3/4-(2n+3)/2(n+1)(n+2)...
1/1*4+1/2*5+1/3*6+……+1/n*(n+3)
证明1/1*3+1/2*4+1/3*5+……+1/n(n+2)=3/4-(2n+3)/2(n+1)(n+2) 展开
证明1/1*3+1/2*4+1/3*5+……+1/n(n+2)=3/4-(2n+3)/2(n+1)(n+2) 展开
展开全部
1/n(n+2)= 1/2*[1/n -1/(n+2)]
1/1*3+1/2*4+1/3*5+……+1/n(n+2)
=1/2*[ 1/1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+...+1/(n-2)-1/n+1/(n-1)-1/(n+1)+1/(n)-1/(n+2) ]
=1/2*{ [ 1/1+1/2+1/3+...+1/(n-1)+1/n]-[1/3+1/4+1/5+...+1/n+1/(n+1)+1/(n+2) }
=1/2*{ [ 1/1+1/2]-[1/(n+1)+1/(n+2) }
=3/4-(2n+3)/2(n+1)(n+2)
1/n(n+3)= 1/3*[1/n -1/(n+3)]
1/1*4+1/2*5+1/3*6+……+1/n*(n+3) 【同样处理】
=1/3*{ [ 1/1+1/2+1/3+...+1/(n-1)+1/n]-[1/4+1/5+...+1/n+1/(n+1)+1/(n+2)+1/(n+3) }
=1/3*{ [ 1/1+1/2+1/3]-[1/(n+1)+1/(n+2)+1/(n+3) }
= 11/18-[1/(n+1)+1/(n+2)+1/(n+3)]/3
1/1*3+1/2*4+1/3*5+……+1/n(n+2)
=1/2*[ 1/1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+...+1/(n-2)-1/n+1/(n-1)-1/(n+1)+1/(n)-1/(n+2) ]
=1/2*{ [ 1/1+1/2+1/3+...+1/(n-1)+1/n]-[1/3+1/4+1/5+...+1/n+1/(n+1)+1/(n+2) }
=1/2*{ [ 1/1+1/2]-[1/(n+1)+1/(n+2) }
=3/4-(2n+3)/2(n+1)(n+2)
1/n(n+3)= 1/3*[1/n -1/(n+3)]
1/1*4+1/2*5+1/3*6+……+1/n*(n+3) 【同样处理】
=1/3*{ [ 1/1+1/2+1/3+...+1/(n-1)+1/n]-[1/4+1/5+...+1/n+1/(n+1)+1/(n+2)+1/(n+3) }
=1/3*{ [ 1/1+1/2+1/3]-[1/(n+1)+1/(n+2)+1/(n+3) }
= 11/18-[1/(n+1)+1/(n+2)+1/(n+3)]/3
展开全部
提示,1/n*(n+3)=(1/3)[3/(n*(n+3))]=(1/3)(1/n-1/(n+3))
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1,
1/n*(n+3)=1/3(1/n-1/(n+3));
原式=1/3(1-1/4+1/2-1/5+1/3-1/6+1/4-1/7.....1/n-1/(n+3))=1/3(1+1/2+1/3-1/(n+1)-1/(n+2)+1/(n+3))=
2,
1/n(n+2)=1/2(1/n-1/(n+2));
原式=1/2(1+1/2-1/(n+1)-1/(n+2))=结果
总结:1/n(n+m)=1/m(1/n-1/(n+m))
1/n*(n+3)=1/3(1/n-1/(n+3));
原式=1/3(1-1/4+1/2-1/5+1/3-1/6+1/4-1/7.....1/n-1/(n+3))=1/3(1+1/2+1/3-1/(n+1)-1/(n+2)+1/(n+3))=
2,
1/n(n+2)=1/2(1/n-1/(n+2));
原式=1/2(1+1/2-1/(n+1)-1/(n+2))=结果
总结:1/n(n+m)=1/m(1/n-1/(n+m))
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询