设Sn是数列{an}的前n项和,且2an+Sn=An2+Bn+C.(1)当A=B=0,C=1时,求an;(2)若数列{an}为等差数列,
设Sn是数列{an}的前n项和,且2an+Sn=An2+Bn+C.(1)当A=B=0,C=1时,求an;(2)若数列{an}为等差数列,且A=1,C=-2.①求an;②设...
设Sn是数列{an}的前n项和,且2an+Sn=An2+Bn+C.(1)当A=B=0,C=1时,求an;(2)若数列{an}为等差数列,且A=1,C=-2.①求an;②设bn=1anan+1+an+1an,且数列{bn}的前n项和为Tn,求T60的值.
展开
1个回答
展开全部
(1)由题意得,2an+Sn=1,
∴2an-1+Sn-1=1(n≥2),
两式相减,得an=
an?1,…(3分)
又当n=1时,有3a1=1,即a1=
,
∴数列{an}为等比数列,
∴an=
(
)n?1.…(5分)
(2)①∵数列{an}为等差数列,
由通项公式与求和公式,得:
2an+Sn=2a1+2(n?1)d+
n2+(a1?
)n=
n2+(a1+
)n+2a1?2d,
∵A=1,C=-2,∴
=1,a1-d=-2,
∴d=2,a1=1,∴an=2n-1.(10分)
②bn=
=
=
=
=
∴2an-1+Sn-1=1(n≥2),
两式相减,得an=
2 |
3 |
又当n=1时,有3a1=1,即a1=
1 |
3 |
∴数列{an}为等比数列,
∴an=
1 |
3 |
2 |
3 |
(2)①∵数列{an}为等差数列,
由通项公式与求和公式,得:
2an+Sn=2a1+2(n?1)d+
d |
2 |
d |
2 |
d |
2 |
3d |
2 |
∵A=1,C=-2,∴
d |
2 |
∴d=2,a1=1,∴an=2n-1.(10分)
②bn=
1 | ||||
an
|
=
1 | ||||
(2n?1)
|
=
1 | ||||||||
|
=
| ||||||||||||
|
=
| ||||
2
|