设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1.(Ⅰ)求数列{an}和{bn}的通项
设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1.(Ⅰ)求数列{an}和{bn}的通项公式;(Ⅱ)设cn=anbn,求数...
设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1.(Ⅰ)求数列{an}和{bn}的通项公式;(Ⅱ)设cn=anbn,求数列{cn}的前n项和Tn.
展开
(1):当n=1时,a
1=S
1=2;当n≥2时,a
n=S
n-S
n-1=2n
2-2(n-1)
2=4n-2,
故{a
n}的通项公式为a
n=4n-2,即{a
n}是a
1=2,公差d=4的等差数列.
设{b
n}的公比为q,则b
1qd=b
1,d=4,∴q=
.
故b
n=b
1q
n-1=2×
,即{b
n}的通项公式为b
n=
.
(II)∵c
n=
=
=(2n-1)4
n-1,
T
n=c
1+c
2+…+c
nT
n=1+3×4
1+5×4
2+…+(2n-1)4
n-14T
n=1×4+3×4
2+5×4
3+…+(2n-3)4
n-1+(2n-1)4
n两式相减得,3T
n=-1-2(4
1+4
2+4
3+…+4
n-1)+(2n-1)4
n=
[(6n-5)4
n+5]
∴T
n=
[(6n-5)4
n+5]
收起
为你推荐: