设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1.(Ⅰ)求数列{an}和{bn}的通项

设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1.(Ⅰ)求数列{an}和{bn}的通项公式;(Ⅱ)设cn=anbn,求数... 设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1.(Ⅰ)求数列{an}和{bn}的通项公式;(Ⅱ)设cn=anbn,求数列{cn}的前n项和Tn. 展开
 我来答
游希先生丶AQ2
2014-09-20 · TA获得超过146个赞
知道答主
回答量:109
采纳率:0%
帮助的人:141万
展开全部
(1):当n=1时,a1=S1=2;当n≥2时,an=Sn-Sn-1=2n2-2(n-1)2=4n-2,
故{an}的通项公式为an=4n-2,即{an}是a1=2,公差d=4的等差数列.
设{bn}的公比为q,则b1qd=b1,d=4,∴q=
1
4

故bn=b1qn-1=2×
1
4n-1
,即{bn}的通项公式为bn=
2
4n-1

(II)∵cn=
an
bn
=
4n-2
2
4n-1
=(2n-1)4n-1
Tn=c1+c2+…+cn
Tn=1+3×41+5×42+…+(2n-1)4n-1
4Tn=1×4+3×42+5×43+…+(2n-3)4n-1+(2n-1)4n
两式相减得,3Tn=-1-2(41+42+43+…+4n-1)+(2n-1)4n=
1
3
[(6n-5)4n+5]
∴Tn=
1
9
[(6n-5)4n+5]
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式