(2010?攀枝花)如图所示,在△ABC中,AB=AC=2,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分

(2010?攀枝花)如图所示,在△ABC中,AB=AC=2,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,给出以下四个结论... (2010?攀枝花)如图所示,在△ABC中,AB=AC=2,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,给出以下四个结论:①BE=AF,②S△EPF的最小值为12,③tan∠PEF=33,④S四边形AEPF=1,当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),上述结论始终正确是______. 展开
 我来答
你猜5922
推荐于2016-08-29 · 超过71用户采纳过TA的回答
知道答主
回答量:128
采纳率:100%
帮助的人:133万
展开全部
解答:解:连接PA.
∵AB=AC,∠BAC=90°,P是BC的中点,
∴PA=PC,∠APC=90°,∠PAE=∠PCF=45°.
∵∠FPE=∠APC=90°,
∴∠CPF=∠APE.
∵PA=PC,∠PAE=∠PCF,
∴△CFP≌△AEP.
∴AE=CF.
∵AB-AE=AC-CF,
∴BE=AF,故①始终正确;
∵△CFP≌△AEP,
∴PE=PF.
∵∠EPF=90°,
∴△EPF为等腰直角三角形.
∴∠PEF=45°.
∴tan∠PEF=1,故③错误;
∵PA=BP,∠B=∠PAF,BE=AF,
∴△EBP≌△PAF.
∵S△EBP+S△AEP+S△PAF+S△CFP=S△ABC,S△AEP+S△PAF=S四边形AEPF
∴S四边形AEPF=
1
2
S△ABC=
1
2
(2×2÷2)=1,故④正确;
∴S△EPF的最小值为
1
2
,故②正确.
故选①②④.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式