![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则FG
如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则FGAF=()A.12B.2C.3D.33...
如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则FGAF=( )A.12B.2C.3D.33
展开
展开全部
解答:证明:∵△ABC是等边三角形,
∴AC=AB,∠BAC=∠B=60°,
在△ABE和△CAD中
∴△ABE≌△CAD (SAS),
∴∠BAE=∠ACD,
∴∠AFD=∠CAE+∠ACD=∠CAE+∠BAE=∠BAC=60°,
∵AG⊥CD,
∴∠AGF=90°,
∴∠FAG=30°,
∴sin30°=
=
,
即
=
.
∴AC=AB,∠BAC=∠B=60°,
在△ABE和△CAD中
|
∴△ABE≌△CAD (SAS),
∴∠BAE=∠ACD,
∴∠AFD=∠CAE+∠ACD=∠CAE+∠BAE=∠BAC=60°,
∵AG⊥CD,
∴∠AGF=90°,
∴∠FAG=30°,
∴sin30°=
FG |
AF |
1 |
2 |
即
FG |
AF |
1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询