微分中值定理证明
展开全部
令f(x)=a^(1/x),则f'(x)=-(1/x²)(a^(1/x))·lna,由中值定理知
存在ξ∈(n,n+1),使得f'(ξ)=f(n+1)-f(n)
即a^(1/(n+1))-a^(1/n)=-(1/ξ²)(a^(1/ξ))·lna
=>[a^(1/(n+1))-a^(1/n)]/lna=(1/ξ²)a^(1/ξ)
∵n<ξ<n+1,∴1/(n+1)<1/ξ<1/n,又a>1
∴1/(n+1)²<1/ξ²<1/n²,a^(1/(n+1))<a^(1/ξ)<a^(1/n)
∴[a^(1/(n+1))]/(n+1)²<[a^(1/ξ)]/ξ²<[a^(1/n)]/n²
即[a^(1/(n+1))]/(n+1)²<[a^(1/(n+1))-a^(1/n)]/lna<[a^(1/n)]/n²
存在ξ∈(n,n+1),使得f'(ξ)=f(n+1)-f(n)
即a^(1/(n+1))-a^(1/n)=-(1/ξ²)(a^(1/ξ))·lna
=>[a^(1/(n+1))-a^(1/n)]/lna=(1/ξ²)a^(1/ξ)
∵n<ξ<n+1,∴1/(n+1)<1/ξ<1/n,又a>1
∴1/(n+1)²<1/ξ²<1/n²,a^(1/(n+1))<a^(1/ξ)<a^(1/n)
∴[a^(1/(n+1))]/(n+1)²<[a^(1/ξ)]/ξ²<[a^(1/n)]/n²
即[a^(1/(n+1))]/(n+1)²<[a^(1/(n+1))-a^(1/n)]/lna<[a^(1/n)]/n²
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
上海华然企业咨询有限公司专注于AI与数据合规咨询服务。我们的核心团队来自头部互联网企业、红圈律所和专业安全服务机构。凭借深刻的AI产品理解、上百个AI产品的合规咨询和算法备案经验,为客户提供专业的算法备案、AI安全评估、数据出境等合规服务,...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询