急、急求助高手高一数学集合题目

方程x2-ax+b=0的两实根为m,n,方程x2-bx+c=0的两实根为p,q,其中m、n、p、q互不相等,集合A={m,n,p,q},作集合S={x|x=a+b,a∈A... 方程x2-ax+b=0的两实根为m,n,方程x2-bx+c=0的两实根为p,q,其中m、n、p、q互不相等,集合A={m,n,p,q},作集合S={x|x=a+b,a∈A,b∈A且a≠b},P={x|x=ab,a∈A,b∈A且a≠b},若已知S={1,2,5,6,9,10},P={-7,-3,-2,6,14,21},求a,b,c的值 展开
齐明水
2010-09-12 · TA获得超过316个赞
知道小有建树答主
回答量:190
采纳率:0%
帮助的人:168万
展开全部
由已知得,m+n=a,mn=p+q=b,pq=c,且a^2-4b>0,b^2-4c>0
因为mn=p+q,故b∈S交P
所以b=6
所以m、n为两正根(不可能为两负根,因为集合S中无负元素)
因为a^2-4b>0,所以a=5,6,9,10
当a=5时,m=3,n=2
又因为集合P={mn,mp,mq,np,nq,pq},故p、q为一正一负根,即c<0
c取-7,-3,-2
当c=-7时,p=7,q=-1
……要验证其他几个值不合适,这里就不列了
综上所述a=5,b=6,c=-7
匿名用户
2010-09-12
展开全部
答案:a=5,b=6,c=7
由伟达定理得,a=m+n,b=mn;b=p+q,c=pq
所以,a∈S,b∈S,b∈P,c∈P
即b=6
又a²>4b,b²>4c
a∈{1,2,5} b∈{-7,-3,-2}
观察两组数字,可得出a=5,c=-7,再验证得出结论
或逐个依次代入原式中求解
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式