已知a是实数,函数f(x)=x2(x-a)(1)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线

已知a是实数,函数f(x)=x2(x-a)(1)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程;(2)a>0,求f(x)的单调增区间.... 已知a是实数,函数f(x)=x2(x-a)(1)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程;(2)a>0,求f(x)的单调增区间. 展开
 我来答
黎约全球の1400
推荐于2016-06-17 · 超过58用户采纳过TA的回答
知道答主
回答量:110
采纳率:0%
帮助的人:105万
展开全部
(1)f′(x)=3x2-2ax,
因为f′(1)=3-2a=3,所以a=0.
又当a=0时,f(1)=1,f′(1)=3,
所以曲线y=f(x)在点(1,f(1))处的切线方程为3x-y-2=0…(6分)
(2)令f′(x)=0,解得x1=0,x2=
2a
3
2a
3
>0,
所以由f′(x)>0,解得x>
2a
3
,或x<0,
即f(x)在(-∞,0),(
2
3
a,+∞)
上单调递增…(6分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式