已知a是实数,函数f(x)=x2(x-a).(Ⅰ)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的

已知a是实数,函数f(x)=x2(x-a).(Ⅰ)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)在区间[0,2]上的最大值... 已知a是实数,函数f(x)=x2(x-a).(Ⅰ)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)在区间[0,2]上的最大值. 展开
 我来答
筁L8
推荐于2016-04-29 · 超过63用户采纳过TA的回答
知道答主
回答量:189
采纳率:0%
帮助的人:61.2万
展开全部
(I)f'(x)=3x2-2ax.因为f'(1)=3-2a=3,所以a=0.
又当a=0时,f(1)=1,f'(1)=3,则切点坐标(1,1),斜率为3
所以曲线y=f(x)在(1,f(1))处的切线方程为y-1=3(x-1)化简得3x-y-2=0.
(II)令f'(x)=0,解得x1=0,x2
2a
3

2a
3
≤0
,即a≤0时,f(x)在[0,2]上单调递增,从而fmax=f(2)=8-4a.
2a
3
≥2
时,即a≥3时,f(x)在[0,2]上单调递减,从而fmax=f(0)=0.
0<
2a
3
<2
,即0<a<3,f(x)在[0,
2a
3
]
上单调递减,在[
2a
3
,2]
上单调递增,从而fmax
8?4a,0<a≤2.
0,2<a<3.

综上所述,fmax
8?4a,a≤2.
0,a>2.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式