在三角形ABC中,cosB=-5/13,cosC=4/5,(1)求sinA的值。(2)设三角形ABC的面积为33/2,求BC的长
展开全部
解:(1)由cosB=-5/13,cosC=4/5得
sinB=12/13,sinC=3/5
在三角形ABC中,
sinA=sin(180-A)=sin(B+C)
=sinBcosC+cosBsinC
=12/13*4/5+(-5/13*3/5)=33/65
(2)由正弦定理,sinA/BC=sinB/AC
得AC=BC*sinB/sinA
由三角形面积公式,
S=1/2*AC*BC*sinC
=1/2*(BC*sinB/sinA)*BC*sinC
=1/2*BC^2*sinB*sinC/sinA
=1/2*BC^2*(12/13)*(3/5)/(33/65)
=6/11*BC^2
又S=33/2
解得BC=11/2
sinB=12/13,sinC=3/5
在三角形ABC中,
sinA=sin(180-A)=sin(B+C)
=sinBcosC+cosBsinC
=12/13*4/5+(-5/13*3/5)=33/65
(2)由正弦定理,sinA/BC=sinB/AC
得AC=BC*sinB/sinA
由三角形面积公式,
S=1/2*AC*BC*sinC
=1/2*(BC*sinB/sinA)*BC*sinC
=1/2*BC^2*sinB*sinC/sinA
=1/2*BC^2*(12/13)*(3/5)/(33/65)
=6/11*BC^2
又S=33/2
解得BC=11/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询