2个回答
展开全部
1、在函数f(x)的间断点x0处,函数极限存在(或左右极限存在且相等)为A,那么该间断点处可以重新定义或补充定义f(x0)=A,使新的函数在x0点处连续,就称该间断点x0就是函数f(x)的可去间断点。
2、给定的函数在间断点x0=1处函数虽然没有定义,但是极限存在且等于1/3,所以补充定义f(1)=1/3,使新的函数在x0=1点处连续,就称该间断点x0=1就是给定函数f(x)的可去间断点。
3、1) 间断点 x = 0
lim<x→0>(1+x)^(1/x) = e , 故该间断点是可去间断点
2 ) y = (x+1)(x-1)/[(x-1)(x-2)]
间断点 x = 1,及 x = 2
lim<x→1> (x+1)(x-1)/[(x-1)(x-2)] = -2 , 故 x = 1 是可去间断点;
lim<x→2> (x+1)(x-1)/[(x-1)(x-2)] = ∞ , 故 x = 2 是无穷间断点。
2、给定的函数在间断点x0=1处函数虽然没有定义,但是极限存在且等于1/3,所以补充定义f(1)=1/3,使新的函数在x0=1点处连续,就称该间断点x0=1就是给定函数f(x)的可去间断点。
3、1) 间断点 x = 0
lim<x→0>(1+x)^(1/x) = e , 故该间断点是可去间断点
2 ) y = (x+1)(x-1)/[(x-1)(x-2)]
间断点 x = 1,及 x = 2
lim<x→1> (x+1)(x-1)/[(x-1)(x-2)] = -2 , 故 x = 1 是可去间断点;
lim<x→2> (x+1)(x-1)/[(x-1)(x-2)] = ∞ , 故 x = 2 是无穷间断点。
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
展开全部
1 间断点 x = 0
lim<x→0>(1+x)^(1/x) = e , 故该间断点是可去间断点
2 y = (x+1)(x-1)/[(x-1)(x-2)]
间断点 x = 1,及 x = 2
lim<x→1> (x+1)(x-1)/[(x-1)(x-2)] = -2 , 故 x = 1 是可去间断点;
lim<x→2> (x+1)(x-1)/[(x-1)(x-2)] = ∞ , 故 x = 2 是无穷间断点。
lim<x→0>(1+x)^(1/x) = e , 故该间断点是可去间断点
2 y = (x+1)(x-1)/[(x-1)(x-2)]
间断点 x = 1,及 x = 2
lim<x→1> (x+1)(x-1)/[(x-1)(x-2)] = -2 , 故 x = 1 是可去间断点;
lim<x→2> (x+1)(x-1)/[(x-1)(x-2)] = ∞ , 故 x = 2 是无穷间断点。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询