已知,如图(1)点A、E、F、C在同一条直线上,AE=CF,过点E、F分别作DE⊥AC,垂足分别是E和F,若AB=CD;
已知,如图(1)点A、E、F、C在同一条直线上,AE=CF,过点E、F分别作DE⊥AC,垂足分别是E和F,若AB=CD;已知,如图(1)点A、E、F、C在同一条直线上,A...
已知,如图(1)点A、E、F、C在同一条直线上,AE=CF,过点E、F分别作DE⊥AC,垂足分别是E和F,若AB=CD;
已知,如图(1)点A、E、F、C在同一条直线上,AE=CF,过点E、F分别作DE⊥AC于E,BF⊥AC于F。
(1)若AB=CD;求证:GE=GF
(2)若将⊿DEC的边EC沿AC方向移动变为图(2)的情况时,其他条件不变,上一问的结论是否成立?请说明理由。 展开
已知,如图(1)点A、E、F、C在同一条直线上,AE=CF,过点E、F分别作DE⊥AC于E,BF⊥AC于F。
(1)若AB=CD;求证:GE=GF
(2)若将⊿DEC的边EC沿AC方向移动变为图(2)的情况时,其他条件不变,上一问的结论是否成立?请说明理由。 展开
4个回答
推荐于2016-12-01
展开全部
1.连接BD,交EF于G
∵AE+EF=AF EF+CF=CE AE=CF
∴AF=CE
又∵AB=CD BF⊥AC DE⊥AC
∴△ABF≌△CDE(HL)
∴BF=DE
在△DEG与△BFG中 BF=DE BF⊥AC DE⊥AC
角DGE=角BGF
∴△DEG≌△BFG(AAS)
∴EG=GF,DG=BG
∴BD与EF互相平分
2。成立
同理
∵AE+EF=AF EF+CF=CE AE=CF
∴AF=CE
又∵AB=CD BF⊥AC DE⊥AC
∴△ABF≌△CDE(HL)
∴BF=DE
在△DEG与△BFG中 BF=DE BF⊥AC DE⊥AC
角DGE=角BGF
∴△DEG≌△BFG(AAS)
∴EG=GF,DG=BG
∴BD与EF互相平分
2。成立
同理
参考资料: http://zhidao.baidu.com/question/120209737.html?fr=qrl&cid=983&index=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询