
已知三角形ABC周长为根2+1,且sinA+sinB=根2sinC,若面积为6分之1sinC,求C
2个回答
展开全部
解:设三边长分别为a、b、c,
已知a+b+c=√2+1
sinA+sinB=√2sinC
S=(SinC)/6
正弦定理:
sinA/a=sinB/b=sinC/c 变形得
sinA/a=sinB/b=sinC/c=(sinA+sinB+sinC)/(a+b+c)
=(√2sinC+sinC)/(√2+1)
=sinC
(sinC)/c=sinC c=1
毕!!
已知a+b+c=√2+1
sinA+sinB=√2sinC
S=(SinC)/6
正弦定理:
sinA/a=sinB/b=sinC/c 变形得
sinA/a=sinB/b=sinC/c=(sinA+sinB+sinC)/(a+b+c)
=(√2sinC+sinC)/(√2+1)
=sinC
(sinC)/c=sinC c=1
毕!!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询