如图,证明三角函数恒等式
展开全部
证:
sinx+siny=sin(x+y)+4sin(x/2)sin(y/2)sin[(x+y)/2]
(sinA+sinB+sinC+sinD)/4
=[(sinA+sinC)+(sinB+sinD)]/4
=[sin(A+C)+4sin(A/2)sin(C/2)sin[(A+C)/2]+sin(B+D)+4sin(B/2)sin(D/2)sin[(B+D)/2]]/4
=[sin180°+4sin(A/2)sin(C/2)sin90°+sin180°+4sin(B/2)sin(D/2)sin90°]/4
=[0+4sin(A/2)sin(C/2)+0+4sin(B/2)sin(D/2)]/4
=sin(A/2)sin(C/2)+sin(B/2)sin(D/2)
sinx+siny=sin(x+y)+4sin(x/2)sin(y/2)sin[(x+y)/2]
(sinA+sinB+sinC+sinD)/4
=[(sinA+sinC)+(sinB+sinD)]/4
=[sin(A+C)+4sin(A/2)sin(C/2)sin[(A+C)/2]+sin(B+D)+4sin(B/2)sin(D/2)sin[(B+D)/2]]/4
=[sin180°+4sin(A/2)sin(C/2)sin90°+sin180°+4sin(B/2)sin(D/2)sin90°]/4
=[0+4sin(A/2)sin(C/2)+0+4sin(B/2)sin(D/2)]/4
=sin(A/2)sin(C/2)+sin(B/2)sin(D/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询