全微分的通解怎么求?谢谢
展开全部
求微分方程通解的方法有很多种,如:特征线法,分离变量法及特殊函数法等等。而对于非齐次方程而言,任一个非齐次方程的特解加上一个齐次方程的通解,就可以得到非齐次方程的通解。
微分方程是伴随着微积分学一起发展起来的。微积分学的奠基人Newton和Leibniz的著作中都处理过与微分方程有关的问题。微分方程的应用十分广泛,可以解决许多与导数有关的问题。
数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部分性质。
在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。
富港检测技术(东莞)有限公司_
2024-06-06 广告
2024-06-06 广告
ISTA3L是一个基于研究、数据驱动的测试协议,它模拟了由零售公司完成的产品订单被直接运送给消费者时所经历的危险,它允许用户评估包装产品的能力,以承受运输和处理包装产品时所经历的供应链危险,从接收到任何电子商务零售商履行操作,直到最终消费者...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
由于P=x2+y,Q=x-2y满足Qx=Py,因此是一个全微分方程
∴存在函数u(x,y),使得du=(x2+y)dx+(x-2y)dy
∴u(x,y)=∫ [(0,0),(x,y)] (x2+y)dx+(x−2y)dy
=∫ [0,x]x2dx+∫[0,y](x−2y)dy
=1/3x^3+xy−y^2
而du=0,因此u(x,y)=C,故
x3 /3+xy−y^2=C
∴存在函数u(x,y),使得du=(x2+y)dx+(x-2y)dy
∴u(x,y)=∫ [(0,0),(x,y)] (x2+y)dx+(x−2y)dy
=∫ [0,x]x2dx+∫[0,y](x−2y)dy
=1/3x^3+xy−y^2
而du=0,因此u(x,y)=C,故
x3 /3+xy−y^2=C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询