数学期望,方差的计算公式是??

 我来答
帐号已注销
2021-06-06 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:165万
展开全部

方程D(X)=E{[X-E(X)]^2}=E(X^2) - [ E(X)]^2,其中 E(X)表示数学期望

若x1,x2,x3......xn的平均数为m

则方差s^2=1/n[(x1-m)^2+(x2-m)^2+.......+(xn-m)^2]

方差即偏离平方的均值,称为标准差或均方差,方差描述波动程度。

对于连续型随机变量X,若其定义域为(a,b),概率密度函数为f(x),连续型随机变量X方差计算公式:D(X)=(x-μ)^2 f(x) dx。

离散型:

如果随机变量只取得有限个值或无穷能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。

小熊玩科技gj
高能答主

2020-07-17 · 世界很大,慢慢探索
知道大有可为答主
回答量:2.2万
采纳率:100%
帮助的人:555万
展开全部

方程D(X)=E{[X-E(X)]^2}=E(X^2) - [ E(X)]^2,其中 E(X)表示数学期望。

对于连续型随机变量X,若其定义域为(a,b),概率密度函数为f(x),连续型随机变量X方差计算公式:D(X)=(x-μ)^2 f(x) dx。

方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差、方差越大,离散程度越大),若X的取值比较集中,则方差D(X)较小,若X的取值比较分散,则方差D(X)较大。因此,D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。

扩展资料:

常用分布的方差

1、两点分布

2、二项分布 X ~ B ( n, p )引入随机变量Xi (第i次试验中A 出现的次数,服从两点分布)

3、泊松分布(推导略)

4、均匀分布 另一计算过程为

5、指数分布(推导略)

6、正态分布(推导略)

7、t分布:其中X~T(n),E(X)=0

8、F分布:其中X~F(m,n)。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
权伦欧培
2020-03-16 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:26%
帮助的人:1114万
展开全部
若x1,x2,x3......xn的平均数为m
则方差s^2=1/n[(x1-m)^2+(x2-m)^2+.......+(xn-m)^2]
方差即偏离平方的均值,称为标准差或均方差,方差描述波动程度。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
长孙秀英娄珍
2020-03-13 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:32%
帮助的人:880万
展开全部
原始数据:x1,x2,...,xn
x
的数学期望:Ex
=
[∑(i=1->n)
xi]
/
n
(1)
x
的方差
:D(x)
=
[∑(i=1->n)
(xi
-
Ex)²]
/
n
(2)
x
的方差:D(x)还等于:D(x)=x的均方值
-
x的均值Ex的平方(Ex)²,
即:D(x)
=
[∑(i=1->n)
(xi)²]
/
n
-
(Ex)²
(3)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
禽秀芳乔婷
2020-03-09 · TA获得超过3.6万个赞
知道小有建树答主
回答量:1.2万
采纳率:34%
帮助的人:1083万
展开全部
对于2项分布(例子:在n次试验中有k次成功,每次成功概率为p,他的分布列求数学期望和方差)有ex=np
dx=np(1-p)
n为试验次数
p为成功的概率
对于几何分布(每次试验成功概率为p,一直试验到成功为止)有ex=1/p
dx=p^2/q
还有任何分布列都通用的
dx=e(x)^2-(ex)^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式