如何因式分解来解一元三次方程?

 我来答
gyh2
2006-06-03 · TA获得超过341个赞
知道答主
回答量:145
采纳率:0%
帮助的人:108万
展开全部
一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。
一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:
(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到
(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))
(3)由于x=A^(1/3)+B^(1/3),所以(2)可化为
x^3=(A+B)+3(AB)^(1/3)x,移项可得
(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知
(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得
(6)A+B=-q,AB=-(p/3)^3
(7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即
(8)y1+y2=-(b/a),y1*y2=c/a
(9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a
(10)由于型为ay^2+by+c=0的一元二次方程求根公式为
y1=-(b+(b^2-4ac)^(1/2))/(2a)
y2=-(b-(b^2-4ac)^(1/2))/(2a)
可化为
(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)
y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)
将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得
(12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)
B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)
(13)将A,B代入x=A^(1/3)+B^(1/3)得
(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)
式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
西域牛仔王4672747
2014-02-06 · 知道合伙人教育行家
西域牛仔王4672747
知道合伙人教育行家
采纳数:30557 获赞数:146231
毕业于河南师范大学计算数学专业,学士学位, 初、高中任教26年,发表论文8篇。

向TA提问 私信TA
展开全部
中学阶段的高次方程一般都能简单分解,

先试一些简单的整数根如 -1,0,1 等,如果满足就可确定一个因子,然后凑另一个因子的系数。
如 x^3-2x^2-19x+20 ,系数和为 0,说明有因子 x-1 ,
然后 x^3 - 2x^2 - 19x + 20=(x-1)(x^2+ax+b),展开比较系数有 a-1= -2 ,-1*b= 20 ,

所以 x^3 - 2x^2 - 19x + 20=(x-1)(x^2-x-20) ,

最后用十字相乘分解 x^2-x+20=(x+4)(x-5) 。

类似地,可以分解 x^4 + 11x^3 +38x^2 +40x=x(x+2)(x+4)(x+5) 。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
苍茫中的尘埃
高粉答主

推荐于2019-10-21 · 每个回答都超有意思的
知道大有可为答主
回答量:1.9万
采纳率:91%
帮助的人:1.1亿
展开全部
中学阶段的高次方程一般都能简单分解,

先试一些简单的整数根如 -1,0,1 等,如果满足就可确定一个因子,然后凑另一个因子的系数。
如 x^3-2x^2-19x+20 ,系数和为 0,说明有因子 x-1 ,
然后 x^3 - 2x^2 - 19x + 20=(x-1)(x^2+ax+b),展开比较系数有 a-1= -2 ,-1*b= 20 ,

所以 x^3 - 2x^2 - 19x + 20=(x-1)(x^2-x-20) ,

最后用十字相乘分解 x^2-x+20=(x+4)(x-5) 。

类似地,可以分解 x^4 + 11x^3 +38x^2 +40x=x(x+2)(x+4)(x+5) 。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2016-05-05
展开全部
令f(t)=t^3-3t^2+16t+52
若能分解,设原式=t^3-3t^2+at+bt+52
(a+b=16)
即t^3-3t^2+at可以因式分解,bt+52可以因式分解并且有公因式。

t^3-3t^2+at可以分解,即a=2,-10,-4,-18

检验得a=2
即f(t)=(t-2)(t^2-5t+26)

对于三次方程有两种解法:分解因式一般都不太好分,直接上卡尔丹公式特别麻烦,所以不属于中高考范围
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友7747ed7e4
2010-08-09 · TA获得超过1977个赞
知道小有建树答主
回答量:412
采纳率:0%
帮助的人:506万
展开全部
一元三次方程经数学家研究是不可能有求根公式的,
所以一元三次方程只能用因式分解的方法解。

a^3-2a^2-a+7=5
a^3-2a^2-a+2=0
a^3-a-2a^2+2=0
a(a^2-1)-2(a^2-1)=0
(a-2)(a+1)(a-1)=0

所以a=2,a=-1,a=1一共三个解
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式