用逆矩阵解下列矩阵方程。逆矩阵
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)+提问者悬赏50(财富值+成长值)
2个回答
展开全部
(1) XA = B, X = BA^(-1)
(A, E) =
[1 1 1 1 0 0]
[0 1 1 0 1 0]
[0 0 1 0 0 1]
初等行变换为
[1 1 0 1 0 -1]
[0 1 0 0 1 -1]
[0 0 1 0 0 1]
初等行变换为
[1 0 0 1 -1 -1]
[0 1 0 0 1 -1]
[0 0 1 0 0 1]
A^(-1) =
[1 -1 -1]
[0 1 -1]
[0 0 1]
X = BA^(-1) =
[1 -3 2]
[0 1 -2]
(2) AXB = C, X = A^(-1)CB^(-1)
B^(-1) =
[ 3 -1]
[-5 2]
(A, E) =
[1 2 3 1 0 0]
[2 2 1 0 1 0]
[3 4 3 0 0 1]
初等行变换为
[1 2 3 1 0 0]
[0 -2 -5 -2 1 0]
[0 -2 -6 -3 0 1]
初等行变换为
[1 0 -2 -1 1 0]
[0 -2 -5 -2 1 0]
[0 0 -1 -1 -1 1]
初等行变换为
[1 0 0 1 3 -2]
[0 -2 0 3 6 -5]
[0 0 1 1 1 -1]
初等行变换为
[1 0 0 1 3 -2]
[0 1 0 -3/2 -3 5/2]
[0 0 1 1 1 -1]
A^(-1) =
[ 1 3 -2]
[-3/2 -3 5/2]
[ 1 1 -1]
A^(-1)C =
[1 1]
[0 -2]
[0 4]
X = A^(-1)CB^(-1) =
[ -2 1]
[ 10 -4]
[-20 8]
(A, E) =
[1 1 1 1 0 0]
[0 1 1 0 1 0]
[0 0 1 0 0 1]
初等行变换为
[1 1 0 1 0 -1]
[0 1 0 0 1 -1]
[0 0 1 0 0 1]
初等行变换为
[1 0 0 1 -1 -1]
[0 1 0 0 1 -1]
[0 0 1 0 0 1]
A^(-1) =
[1 -1 -1]
[0 1 -1]
[0 0 1]
X = BA^(-1) =
[1 -3 2]
[0 1 -2]
(2) AXB = C, X = A^(-1)CB^(-1)
B^(-1) =
[ 3 -1]
[-5 2]
(A, E) =
[1 2 3 1 0 0]
[2 2 1 0 1 0]
[3 4 3 0 0 1]
初等行变换为
[1 2 3 1 0 0]
[0 -2 -5 -2 1 0]
[0 -2 -6 -3 0 1]
初等行变换为
[1 0 -2 -1 1 0]
[0 -2 -5 -2 1 0]
[0 0 -1 -1 -1 1]
初等行变换为
[1 0 0 1 3 -2]
[0 -2 0 3 6 -5]
[0 0 1 1 1 -1]
初等行变换为
[1 0 0 1 3 -2]
[0 1 0 -3/2 -3 5/2]
[0 0 1 1 1 -1]
A^(-1) =
[ 1 3 -2]
[-3/2 -3 5/2]
[ 1 1 -1]
A^(-1)C =
[1 1]
[0 -2]
[0 4]
X = A^(-1)CB^(-1) =
[ -2 1]
[ 10 -4]
[-20 8]
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |