定积分计算题
1个回答
展开全部
∫<0,π>[f(x)+f''(x)]sinxdx=5
==> ∫<0,π>f(x)sinxdx+∫<0,π>f''(x)sinxdx=5
==> ∫<0,π>f(x)sinxdx+∫<0,π>sinxd[f'(x)]=5
==> ∫<0,π>f(x)sinxdx+[sinx·f'(x)|<0,π>-∫<0,π>f'(x)d(sinx)]=5
==> ∫<0,π>f(x)sinxdx+(0-0)-∫<0,π>f'(x)cosxdx=5
==> ∫<0,π>f(x)sinxdx-∫<0,π>cosxd[f(x)]=5
==> ∫<0,π>f(x)sinxdx-[cosxf(x)|<0,π>-∫<0,π>f(x)d(cosx)]=5
==> ∫<0,π>f(x)sinxdx-cosxf(x)|<0,π>+∫<0,π>f(x)·(-sinx)dx=5
==> -cosxf(x)|<0,π>=5
==> cosxf(x)|<0,π>=-5
==> (-1)·f(π)-1·f(0)=-5
==> (-1)·2-f(0)=-5
==> f(0)=3
==> ∫<0,π>f(x)sinxdx+∫<0,π>f''(x)sinxdx=5
==> ∫<0,π>f(x)sinxdx+∫<0,π>sinxd[f'(x)]=5
==> ∫<0,π>f(x)sinxdx+[sinx·f'(x)|<0,π>-∫<0,π>f'(x)d(sinx)]=5
==> ∫<0,π>f(x)sinxdx+(0-0)-∫<0,π>f'(x)cosxdx=5
==> ∫<0,π>f(x)sinxdx-∫<0,π>cosxd[f(x)]=5
==> ∫<0,π>f(x)sinxdx-[cosxf(x)|<0,π>-∫<0,π>f(x)d(cosx)]=5
==> ∫<0,π>f(x)sinxdx-cosxf(x)|<0,π>+∫<0,π>f(x)·(-sinx)dx=5
==> -cosxf(x)|<0,π>=5
==> cosxf(x)|<0,π>=-5
==> (-1)·f(π)-1·f(0)=-5
==> (-1)·2-f(0)=-5
==> f(0)=3
追问
辛苦了😘😘😘
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询