求曲面z=√(4-x²-y²)与3z=x²+y²所围立体的体积
展开全部
z = √(4-x²-y²) 与 3z = x²+y² 消去 z, 得交线在 xOy 坐标平面的投影是
x²+y² = 3,
V = ∫<0, 2π>dt∫<0, √3>[√(4-r^2)-(1/3)r^2]rdr
= 2π∫<0, √3>[√(4-r^2)-(1/3)r^2]rdr
= -π∫<0, √3>√(4-r^2)d(4-r^2) - (2π/3)∫<0, √3>r^3dr
= - (2π/3)[(4-r^2)^(3/2)]<0, √3> - (π/6)[r^4]<0, √3>
= 14π/3 - 9π/6 = 19π/6
x²+y² = 3,
V = ∫<0, 2π>dt∫<0, √3>[√(4-r^2)-(1/3)r^2]rdr
= 2π∫<0, √3>[√(4-r^2)-(1/3)r^2]rdr
= -π∫<0, √3>√(4-r^2)d(4-r^2) - (2π/3)∫<0, √3>r^3dr
= - (2π/3)[(4-r^2)^(3/2)]<0, √3> - (π/6)[r^4]<0, √3>
= 14π/3 - 9π/6 = 19π/6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询