如何证明三角形的重心把中线分成2比1的两部分
展开全部
已知△ABC,D、E、F分别为BC、AC、AB的中点.那么AD、BE、CF三线共点,即重心G.现在证明DG:AG=1:2
证明:
连结EF交AD于M,则M为AD中点
EF为△ABC的中位线,
所以EF‖BC且EF:BC=1:2
由平行线分线段成比例定理有:
GM:MD=EF:BC=1:2
设GM=x,那么GD=2x
DM=GM+GD=3x
AD=2GM=6x
AG=AD-GD=4x
所以GD:AD=2x:4x=1:2
扩展资料:
重心的性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。
5.
以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
参考资料:
搜狗百科-三角形重心
证明:
连结EF交AD于M,则M为AD中点
EF为△ABC的中位线,
所以EF‖BC且EF:BC=1:2
由平行线分线段成比例定理有:
GM:MD=EF:BC=1:2
设GM=x,那么GD=2x
DM=GM+GD=3x
AD=2GM=6x
AG=AD-GD=4x
所以GD:AD=2x:4x=1:2
扩展资料:
重心的性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。
5.
以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
参考资料:
搜狗百科-三角形重心
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询