设数列{An}满足An+1=An²-nAn+1,n=1,2,3,···;当A1=2时,求出A2,A3,A4,A5;

 我来答
潜惜朱星爵
2020-02-07 · TA获得超过3904个赞
知道大有可为答主
回答量:3152
采纳率:28%
帮助的人:170万
展开全部
a2=2^2-1*2+1=3
a3=3^2-2*3+1=4
a4=4^2-3*4+1=5
a5=5^2-4*5+1=6
猜测an=n+1
以下用数学归纳法证明
由a1=2=1+1知n=1时an=n+1成立
设n=k(k属于正整数)时an=n+1成立即ak=k+1
则当n=k+1时,因为a(n+1)=an²-n*an+1,
所以a(k+1)=ak²-k*(k+1)+1
=(k+1)²-k*(k+1)+1
=k²+2k+1-k²-k+1
=k+2
综上,an=n+1成立
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式