f(x+y)=f(x)f(y),如果函数是连续的,证明f(x)是指数函数
展开全部
∵f(x)=f(x/2)*f(x/2)=[f(x/2)]²≥0
∴lnf(x+y)=lnf(x)+lnf(f)
令g(x)=lnf(x)
∵f(x)连续
∴g(x)连续
且g(x+y)=g(x)+g(y)
由柯西定理g(x)=xg(1)
∴lnf(x)=xlnf(1)
∴f(x)=e^[x*lnf(1)]=e^[lnf(1)^x]=[f(x)]^x
令f(1)=a>0
则f(x)=a^x
∴f(x)是指数函数
∴lnf(x+y)=lnf(x)+lnf(f)
令g(x)=lnf(x)
∵f(x)连续
∴g(x)连续
且g(x+y)=g(x)+g(y)
由柯西定理g(x)=xg(1)
∴lnf(x)=xlnf(1)
∴f(x)=e^[x*lnf(1)]=e^[lnf(1)^x]=[f(x)]^x
令f(1)=a>0
则f(x)=a^x
∴f(x)是指数函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询