数学题目.求圆的方程
3个回答
展开全部
将双曲线(3x^2)-(y^2)=12的方程化为:x^2/4-y^2/12=1,c^2=4+12=16,c=4,所以右焦点是(4,0),即圆心为(4,0),又圆过原点,所以圆半径是4,所以这个圆的方程为:(x-4)^2+y^2=16.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
观察题目,从“对称点仍在这圆上”看出X+2Y=0经过圆心(圆心就可以设为(-2b,b))所以可设圆的方程为(x+2b)^2+(y-b)^2=r^2
这里明显的有两个未知数:b和r
下面找两个方程:
1、A点可以带入得到一个方程(2+2b)^2+(3-b)^2=r^2
2、由(圆与直线X-Y+1=0相交的玄长为2倍根号2)看出
r^2=弦心距^2+(根号2)^2
而弦心距是X-Y+1=0到点(-2b,b)的距离
于是写出这个关系:r^2=(│-2b-b+1│/根号2)^2+2
即r^2=(3b-1)^2/2+2
联立方程组求解
以下就自己做了罢
这里明显的有两个未知数:b和r
下面找两个方程:
1、A点可以带入得到一个方程(2+2b)^2+(3-b)^2=r^2
2、由(圆与直线X-Y+1=0相交的玄长为2倍根号2)看出
r^2=弦心距^2+(根号2)^2
而弦心距是X-Y+1=0到点(-2b,b)的距离
于是写出这个关系:r^2=(│-2b-b+1│/根号2)^2+2
即r^2=(3b-1)^2/2+2
联立方程组求解
以下就自己做了罢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询